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Abstract

Let S2 be the 2-dimensional unit sphere and let Jα denote the nonlinear functional on
the Sobolev space H1,2(S2) defined by

Jα(u) =
α

4

∫

S2
|∇u|2 dω +

∫

S2
u dω − ln

∫

S2
eu dω,

where dω denotes Lebesgue measure on S2, normalized so that
∫

S2 dω = 1. Onofri had
established that Jα is non-negative on H1(S2) provided α ≥ 1. In this note, we show that if
Jα is restricted to those u ∈ H1(S2) that satisfy the Aubin condition:

∫

S2
eu xj dw = 0 for all 1 ≤ j ≤ 3,

then the same inequality continues to hold (i.e., Jα(u) ≥ 0) whenever α ≥ 2
3 − ε0 for some

ε0 > 0. The question of Chang-Yang on whether this remains true for all α ≥ 1
2 remains

open.

1 Introduction

Let S2 be the 2-dimensional unit sphere with the standard metric g and the corresponding
volume form dω normalized so that

∫
S2 dω = 1. For α > 0, we consider the following nonlinear

functional on the Sobolev space H1,2(S2):

Jα(u) =
α

4

∫

S2
|∇u|2 dω +

∫

S2
u dω − ln

∫

S2
eu dω.

The classical Moser-Trudinger inequality [13] yields that Jα is bounded from below in H1(S2)
if and only if α ≥ 1. In [14], Onofri proved that the infimum is actually equal to zero for α = 1,
by using the conformal invariance of J1 to show that

inf
u∈M

J1(u) = inf
u∈H1(S2)

J1(u) = 0, (1.1)
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where M is the submanifold of H1(S2) defined by

M :=
{

u ∈ H1(S2);
∫

S2
eux dw = 0

}
, (1.2)

with x = (x1, x2, x3) ∈ S2, on which the infimum of J1 is attained. Other proofs were also given
by Osgood-Phillips-Sarnak [15] and by Hong [10].

Prior to that, Aubin [1] had shown that by restricting the functional Jα to M, it is then again
bounded below by —a necessarily non-positive— constant Cα, for any α ≥ 1

2 . In their work on
Nirenberg’s prescribing Gaussian curvature problem on S2, Chang and Yang [5, 6] showed that
Cα can be taken to be equal to 0 for α ≥ 1− ε0 for some small ε0. This led them to the following

Conjecture 1: If α ≥ 1
2 then inf

u∈M
Jα(u) = 0.

Note that this fails if α < 1
2 , since the functional Jα is then unbounded from below (see [8]).

In this note, we want to give a partial answer to this question by showing that this is indeed
the case for α ≥ 2

3 and slightly below that.
As mentioned above, Aubin had proved that for all α ≥ 1

2 , the functional Jα is coercive
on M, and that it attains its infimum on some function u ∈ M. Accounting for the Lagrange
multipliers, and setting ρ = 1

α , the Euler-Lagrangian equation for u is then

∆u + 2ρ

(
eu

∫
S2 eu dw

− 1
)

=
3∑

j=1

αjxje
u on S2.

In [6], Chang and Yang proved however that αj , j = 1, 2, 3 necessarily vanish. Thus u satisfies
– up to an additive constant – the following equation:

∆u + 2ρ(eu − 1) = 0 on S2. (1.3)

Conjecture (1) is therefore equivalent to the question whether if 1 < ρ ≤ 2, then u ≡ 0 is the
only solution of (1.3).

Here is the main result of this note.

Theorem 1.1. If 1 < ρ ≤ 3
2 and u is a solution of (1.3), then u ≡ 0 on S2.

This clearly gives a positive answer to the question of Chang and Yang for α ≥ 2
3 .

2 The axially symmetric case

The proof of Theorem 1.1 relies on the fact that the conjecture has been shown to be true in
the axially symmetric case. In other words, the following result holds.

Theorem A . Let u be a solution of (1.3) with 1 < ρ ≤ 2. If u is axially symmetric, then
u ≡ 0 on S2.
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Theorem (A) was first established by Feldman, Froese, Ghoussoub and Gui [8] for 1 < ρ ≤ 25
16 .

It was eventually proved for all 1 < ρ ≤ 2 by Gui and Wei [9], and independently by Lin [11].
Note that this means that the following one-dimensional inequality holds:

1
2

∫ 1

−1
(1− x2)|g′(x)|2 dx + 2

∫ 1

−1
g(x) dx− 2 ln

1
2

∫ 1

−1
e2g(x)dx ≥ 0, (2.1)

for every function g on (−1, 1) satisfying
∫ 1
−1(1− x2)|g′(x)|2dx <∞ and

∫ 1
−1 e2g(x)xdx = 0. !.

We now give a sketch of the proof of Theorem A that connects the conjecture of Chang-
Yang to an equally interesting Liouville type theorem on R2. For that, we let Π denote the
stereographic projection S2 → R2 with respect to the North pole N = (0, 0, 1):

Π(x) :=
(

x1

1− x3
,

x2

1− x3

)
.

Suppose u is a solution of (1.3), and set

ũ(y) := u(Π−1(y)) for y ∈ R2.

Then ũ satisfies
∆ũ + 8πρ J(y)

(
eũ − 1

4π

)
= 0 in R2,

where J(y) :=
(

2
1+|y|2

)2
is the Jacobian of Π. By letting

v(y) := ũ(y) + ρ log
(
(1 + |y|2)−2

)
+ log(32πρ) for y ∈ R2, (2.2)

we have that v satisfies
∆v + (1 + |y|2)lev = 0 in R2, (2.3)

where l = 2(ρ− 1).

Note that by using (2.2) with u ≡ 0, equation (2.3) always has a special axially symmetric
solution, namely

v∗(y) = −2ρ log(1 + |y|2) + log(32πρ) for y ∈ R2, (2.4)

where again l = 2(ρ − 1). Moreover, The Pohozaev idendity yields that for any solution v of
(2.3) we have

4 < βl(v) < 4(1 + l), (2.5)

where
βl(v) :=

1
2π

∫

R2
(1 + |y|2)levdy.

An open question that would clearly imply the conjecture of Chang and Yang is the following:

Conjecture 2: Is v∗ the only solution of (2.3) whenever l > 0?
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Note that it is indeed the case if ' < 0 (i.e., ρ < 1 and α > 1), since then we can employ the
method of moving planes to show that v(y) is radially symmetric with respect to the origin, and
then conclude that u(x) is axially symmetric with any line passing through the origin. Thus
u(x) must be a constant function on S2. Equation (1.3) then yields u = 0, which implies Jα ≥ 0
on M. By passing to the limit as α→ 1, we recover the Onofri inequality.

When l > 0 (i.e., ρ > 1 and α ≤ 1), the method of moving planes fails and it is still an open
problem whether any solution of (2.3) is equal to v∗ or not. The following uniqueness theorem
reduces however the problem to whether any solution of (2.3) is radially symmetric.

Theorem B . Suppose l > 0 and vi(y) = vi(|y|), i = 1, 2, are two solutions of (2.3) satisfying

βl(v1) = βl(v2). (2.6)

Then v1 = v2 under one of the following conditions:
(i) l ≤ 1,

or
(ii) l > 1 and 2l < βl(vi) < 2(2 + l) for i = 1, 2.

In order to show how Theorem B implies Theorem A, we suppose u is a solution of (1.3) that
is axially symmetric with respect to some direction. By rotating, the direction can be assumed
to be (0, 0, 1). By using the stereographic projection as above, and setting v as in (2.2), we have

{
v(y) = −4ρ log |y|+ O(1),
1
2π

∫
R2(1 + |y|2)levdy = 4ρ = 4 + 2l.

(2.7)

If l ≤ 1, i.e., ρ ≤ 3
2 , then v = v∗ by (i) of Theorem B, and then u ≡ 0. If l > 1, then by noting

that
2l < 4ρ = 4 + 2l = βl(v) < 4 + 4l,

we deduce that v = v∗ by (ii) of Theorem B, which again means that u ≡ 0.

3 Proof of the main theorem

We shall prove Theorem 1.1 by showing that if ρ ≤ 3
2 , then any solution of (1.3) is necessarily

axially symmetric. We can then conclude by using Theorem A.

We shall need the following lemma.

Lemma 3.1. Let Ω be a simply connected domain in R2, and suppose g ∈ C2(Ω) satisfies
{

∆g + eg > 0 in Ω and∫
Ω egdy ≤ 8π.

Consider an open set ω ⊂ Ω such that λ1,g(ω) ≤ 0, where λ1,g(ω) is the first eigenvalue of the
operator ∆ + eg on H1

0 (ω). Then, we necessarily have that
∫

ω
egdy > 4π. (3.1)
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Lemma 3.1 was first proved in [2] by using the classical Bol inequality. The strict inequality of
(3.1) is due to the fact that ∆g + eg > 0 in Ω. See [3] and references therein.

Now we are in the position to prove the main theorem.

Proof of Theorem 1.1. Suppose u(x) is a solution of (1.3). Let ξ0 be a critical point of u.
Without loss of generality, we may assume ξ0 = (0, 0,−1). By using the stereographic projection
Π as before and letting

v(y) := u(Π−1(x))− 2ρ log(1 + |y|2) + log(32πρ),

v satisfies (2.3) and
∇v(0) = 0. (3.2)

Set
ϕ(y) := y2

∂v

∂y1
− y1

∂v

∂y2
.

Then ϕ satisfies
∆ϕ + (1 + |y|2)levϕ = 0 in R2. (3.3)

If ϕ *≡ 0, then by (3.2),

ϕ(y) = Q(y) + higher order terms for |y| + 1,

where Q(y) is a quadratic polynomial of degree m with m ≥ 2, that is also a harmonic function,
i.e., ∆Q = 0. Thus, the nodal line {y |ϕ(y) = 0} divides a small neighborhood of the origin into
at least four regions. Globally, R2 is therefore divided by the nodal line {y |ϕ(y) = 0} into at
least 3 regions, i.e.,

R2 \ {y |ϕ(y) = 0} =
3⋃

j=1

Ωj .

In each component Ωj , the first eigenvalue of ∆ + (1 + |y|2)lev being equal to 0. Let now

g := log
(
(1 + |y|2)lev

)
.

By noting that
∆g + eg > 0 in R2,

Lemma 3.1 then implies that for each j = 1, 2, 3,
∫

Ωj

egdy =
∫

Ωj

(1 + |y|2)levdy > 4π.

It follows that

8πρ =
3∑

j=1

∫

Ωj

(1 + |y|2)levdy > 12π,

which is a contradiction if we had assumed that ρ ≤ 3
2 . Thus we have ϕ(y) = 0, i.e., v(y) is

axially symmetric. By Theorem A, we can conclude u ≡ 0. !
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Remark 3.2. If we further assume that the antipodal of ξ0 is also a critical point of u, then

R2 \ {y |ϕ(y) = 0} =
m⋃

j=1

Ωj , where m ≥ 4. Lemma 3.1 then yields

8πρ =
∫

R2
(1 + |y|2)levdy ≥

m∑

j=1

∫

Ωj

(1 + |y|2)levdy > 4mπ ≥ 16π,

which is a contradiction whenever ρ ≤ 2. By Theorem A, we have again that u ≡ 0.

For example, if u is even on S2 (i.e., u(z) = u(−z) for all z ∈ S2), then the main theorem
holds for ρ ≤ 2.

Remark 3.3. One can actually show that Conjecture 1 holds for ρ ≤ 3
2 + ε0 for some ε0 > 0.

Indeed, it suffices to show that for α smaller but close to 2
3 , the functional Jα is non-negative.

Assuming not, then there exists a sequence of {αk}k such that 1
2 < αk < 2

3 , limk αk = 2
3 and

infM Jαk(u) < 0. Since Jα is coercive for each α > 1
2 , a standard compactness argument yields

the existence of a minimizer uk ∈ M for Jαk such that uk(0) = 0. Moreover, ‖uk‖H1 < C for
some positive constant independent of k. Modulo extracting a subsequence, uk then converges
weakly to some u0 in M as k →∞, and u0 is necessarily a minimizer for I 2

3
in M that satisfies

u0(0) = 0. By our main result, u0 ≡ 0. Now, we claim that uk actually converges strongly in
H1 to u0 ≡ 0 . This is because – as argued by Chang and Yang – the Euler-Lagrange equations
are then

αk

2
∆uk − 1 +

1
λk

euk = 0 (3.20)

where λk =
∫
S2 eukdx < C for some positive constant C. Multiplying (3.20) by uk and integrat-

ing over S2, we obtain

αk

2

∫

S2
|∇uk|2 dw +

∫

S2
uk(x) dw =

1
λk

∫

S2
euk(x)uk(x) dw. (3.21)

Applying Onofri’s inequality for uk and using that ‖uk‖H1 < C, we get that
∫
S2 e2uk dw is

also uniformly bounded. This combined with Hölder’s inequality and the fact that uk converges
strongly to 0 in L2 yields that

∫
S2 eukuk dw → 0. Use now (3.21) to conclude that ‖uk‖H1 → 0

as k →∞.
Now, write u = v + o(||u||) for ||u|| small, where v belongs to the tangent space of the

submanifold M at u0 ≡ 0 in H1(S2). It is easy to see that
∫
S2 vx dw = 0. We can calculate the

second variation of Jα in M at u0 ≡ 0 and get the following estimate around 0

Jα(u) = α

∫

S2
|∇v|2 dw − 2

∫

S2
|v|2 dw + o(||u||2).

Note that the eigenvalues of the Laplacian on S2 corresponding to the eigenspace generated
by x1, x2, x3 are λ2 = λ3 = λ4 = 2, while λ5 = 6. Since v is orthogonal to x, we have

∫

S2
|∇v|2 dw ≥ 6

∫

S2
|v|2 dw
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and therefore
Jα(u) ≥ (α− 1

3
)||u||2 + o(||u||2).

Taking α = αk and u = uk for k large enough, we get that Jαk(uk) ≥ 0, which clearly contradicts
our initial assumption on uk.

Concluding remarks. (i) The question whether Jα(u) ≥ 0 for 1
2 ≤ α < 2

3 under the condition
(1.2) is still open. However, in [12], it was proved that there is a constant C ≥ 0 such that for
any solution u of (1.3) with 1 < ρ ≤ 2 (i.e. 1

2 ≤ α < 1), we have

|u(x)| ≤ C for all x ∈ S2.

(ii) Recently, Liouville type equations with singular data have attracted a lot of attentions
in the research area of nonlinear partial differential equations, because it is closely related to
vortex condensates appeared in many physics models. One of difficult subjects in this area is to
understand bubbling phenomenons arised from solutions of these equations. For the past twenty
years, there have been many works devoted to this direction. Among bubbling phenomenons,
the most delicate is the situation when more than one vortex are collapsed into one single point.
The equation (2.3) is one of model equations which can allow us to accurately describe bubbling
behavior during those collapses. See [4] and [7] for related details. Thus, understanding the
structure of solutions to the equation (2.3) is fundamentally important. As mentioned above, it
is conjectured that for l ≤ 2, all solutions of (2.3) must be radially symmetric. This remains an
open question, although a partial answer has been given recently in [4].
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